
BB2 1 SMART

CONTRACTS

F I NA L AUD I T

REPORT

BY CRYPT I COCEAN

MARCH 1 S T , 20 2 1

B21

BB21.sol

swapBsc.sol

swapEth.sol

liquidity Provider.sol

On February 24, 2021, the CrypticOcean Audit Security Team received the

BB21 team's application for smart contract security Audit of the BB21

token and locking contract.

The following are the details and results of this smart contract security

Audit :

Project Name:

Smart Contract Files:

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

Audi t I t em

Over f low

Race Condi t ion

Permiss ions

Sa fe ty Des ign

DDOS Attack

Gas Opt imizat ion

Des ign Log ic

Know Attacks

Aud i t SubClass

—

—

Permiss ion

vu lnerab i l i t y Audi t

Excess i ve Audi t ing

Author i t y

Zeppe l in sa femath

Ca l l funct ion secur i t y

—

—

—

Audi t re su l t

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Audit Result: Passed

Audit Team: CrypticOcean Security Team

(Statement: CrypticOcean Technologies only issues this report based on the facts

that have occurred or existed before the report is issued, and bears the

corresponding responsibility in this regard. For the facts that occur or exist later

after the report, CrypticOcean cannot judge the security status of its smart

contract. CrypticOcean is not responsible for it. The security Audit analysis and

other contents of this report are based on the documents and materials provided

by the information provider to CrypticOcean as of the date of this report (referred

to as “the provided information”). CrypticOcean assumes that there has been no

information missing, tampered with, deleted, or concealed. If the information

provided has been missed, modified, deleted, concealed or reflected and is

inconsistent with the actual situation, CrypticOcean will not bear any

responsibility for the resulting loss and adverse effects.)

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

I N TRODUCT ION

This Audit Report will only highlight the overall security and business logic

of B21 Smart Contract. With this report, we have tried to ensure the

reliability, security of their smart contract by complete assessment of their

system’s architecture, and the smart contract codebase.

Testing the functionality of the Smart Contract to determine proper logic

has been followed throughout the process.

Analysing the complexity of the code by thorough, manual review of the

code, line-by-line.

The CrypticOcean team has performed thorough testing of the project

starting with analysing the code design patterns in which we reviewed the

smart contract architecture to ensure it is structured and safe use of third

party smart contracts and libraries. Our team then performed a formal line

by line inspection of the code of the Smart Contract to find any potential

issue like race conditions, transaction-ordering dependence, timestamp

dependence, and denial of service attacks as mentioned in the above table.

In the Unit testing Phase, we coded/conducted Custom unit tests written for

each function in the contract to verify that each function works as expected.

In Automated Testing, We tested the Smart Contract with our in-house

developed tools to identify vulnerabilities and security flaws.

The code was tested in collaboration with our multiple team members and

this included -

AUDITING APPROACH AND

METHODOLOGIES APPLIED

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

Deploying the code on testnet using multiple clients to run live tests

Analysing failure preparations to check how the Smart Contract performs

in case of bugs and vulnerabilities.

Checking whether all the libraries used in the code are on the latest

version.

Analysing the security of the on-chain data.

AUDIT DETAILS

Project Name: B21

Languages: Solidity (Smart contract), Javascript (Unit Testing)

Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Slither,

Surya

CrypticOcean conducted a Security Audit of a smart contract of B21. B21

contract is used to create the BEP20 token, which is a BB21, Smart

contract contains basic functionalities of a BEP20 token.

 Name: BB21

 Symbol: BB21

SUMMARY OF B21 SMART

CONTRACT

OTHER CONTRACTS

Lock tokens on ETH contract to mint over Binance smart chain

(Interoperability)

Liquidity provider token staking and rewards

Locking contract for Binance Smart Chain

Locking Contract for Ethereum

Liquidity Reward contract for Ethereum/BSC

And some advanced features other than essential functions.

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

AUDIT GOALS

Correctness

Readability

Sections of code with high complexity

Quantity and quality of test coverage

The focus of the Audit was to verify that the smart contract system is

secure, resilient and working according to its specifications that have

been provided to the Auditing team. The Audit activities can be grouped

into the following three categories:

Security: Identifying security related issues within each contract and the

system of contracts.

Sound Architecture: Evaluation of the architecture of this system through

the lens of established smart contract best practices and general software

best practices.

Code Correctness and Quality: A full review of the contract source code.

The primary areas of focus include:

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed as

recommended.

Medium severity issues could potentially bring problems and should

eventually be fixed according to suggestions and recommendations.

Low severity issues are minor details and warnings that can remain

unfixed but would be better fixed at some point in the future.

SECURITY LEVEL REFERENCES

Low

2

0 0

0 0

0Open

Closed

Medium High

NUMBER OF ISSUES PER SEVERITY

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

High severity issues:-

No High Severity Issue.

Medium Severity Issues:-

No Medium Severity Issue.

Low Severity Issues:-

1. SafeMath is re-used:

SwapEth.sol#79-155

 - BB21.sol#132-266

 - B21.sol#12-36

 - BB21.sol#132-266

 - SwapBsc.sol#79-155

 - BB21.sol#132-266

 - LiquidityProvider.sol#86-162

 - BB21.sol#132-266

Status: Fixed

2. liquidityProviderToken (LiquidityProvider.sol#165-275) inherits from a

contract for which the name is reused.

 -Pausable (SwapEth.sol#38-63)

Status: Fixed

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

Should check a name of a token BB21

Should check a symbol of a token

Should check a decimal of a token

Should check an owner of a token (61ms)

Should check a balance of a token contract

Should check a balance of an owner (73ms)

Should correctly initialize constructor values of BB21 Token Contract

(73ms)

Should correctly initialize constructor values of BB21 Token Contract

(63ms)

Should check the balance of an Owner

Should correctly initialize constructor values of liquidity Contract (54ms)

Should correctly initialize constructor values of Swap Contract (52ms)

Should check the address of liquidity token contract at locking

Should check the address of liquidity token contract at locking

Should check three-month locking per cent

Should check Six-month locking per cent

Should check Nine-month locking per cent

Should check Twelve-month locking per cent

Should add Address of an lP token

Should check the address of liquidity token contract at locking

Should check the address of liquidity token contract at locking using

function

UNIT TESTING

TEST SUITE

CONTRACT: B21 TOKEN CONTRACTS

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

Should check address of liquidity token contract at locking using

function

Should check address of liquidity token contract at locking using

function

Should check address of liquidity token contract at locking using

function

Should check claimable tokens

Should check address of liquidity token contract at locking using

function

Should check address of b21 token contract at locking

Should check address of b21 fees collection at locking

Should check fees of b21 locking in ETH

Should check if address is subadmin or not locking in token

Should add subadmin (47ms)

Should add subadmin accounts 2 (40ms)

Should check if address is subadmin or not locking in token

Should check if address is subadmin or not locking in token

Should Not add subadmin by non owner account (64ms)

Should Not add subadmin by non owner account

Should remove subadmin accounts 2

Should set fees in ETH

Should check if the address is subadmin or not locking in token

Should check the Total Supply of BTCCToken Tokens

Should check the Name of a token of BTCC Token contract

Should check the symbol of a token of BTCCToken contract

Should check the decimal of a token of BTCCToken contract

Should check the balance of a Owner

Should check the owner of a contract

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

Should check the balance of a contract

Should Not be able to transfer tokens to accounts[1] without having

token (56ms)

Should be able to transfer tokens to accounts[1] (99ms)

Should Approve address[3] to spend specific token on the behalf of

owner (39ms) ✓ should increase the allowance (75ms)

Should decrease the allowance (66ms)

Should Not be able to transfer tokens to accounts[3] it self after

approval from accounts[0] more then allowed (89ms)

Should be able to burn tokens (58ms)

Should check the balance of a Owner after burn

Should check the Total Supply of BSCB21 Tokens

Should Approve swap contract by account 0 (43ms)

Should lock token with fees in token

Should check the balance of a Owner (53ms)

Should check the balance of a locking contract

Should check fees of b21 locking in eth

Should lock token with fees in token

Should check the balance of a Owner (52ms)

Should check the balance of a locking contract

Should Approve swap contract by account 0 to spend LP tokens

Should lock tokens (75ms)

Final Result of Test:

 ✓ 70 Passing (3s) PASSED

❌ 0 Failed

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

AUTOMATION TOOL TESTING:

SLITHER, MYTHRIL, ECHIDNA,

MANTICORE

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

IMPLEMENTATION

RECOMMENDATIONS

setCompleted(uint256) should be declared external:

 - Migrations.setCompleted(uint256) (Migrations.sol#16-18)

balanceOf(address) should be declared external:

 - ERC20.balanceOf(address) (SwapEth.sol#6)

setbaseFees(uint256,uint256) should be declared external:

 - LockingEB21.setbaseFees(uint256,uint256) (SwapEth.sol#181-186)

addSubAdmin(address,uint256) should be declared external:

 - LockingEB21.addSubAdmin(address,uint256) (SwapEth.sol#188-193)

removeSubAdmin(address) should be declared external:

 - LockingEB21.removeSubAdmin(address) (SwapEth.sol#195-199)

balanceOf(address) should be declared external:

 - BasicToken.balanceOf(address) (B21.sol#80-82)

 - ERC20Basic.balanceOf(address) (B21.sol#45)

transfer(address,uint256) should be declared external:

 - ERC20Basic.transfer(address,uint256) (B21.sol#46)

 - BasicToken.transfer(address,uint256) (B21.sol#64-73)

transferFrom(address,address,uint256) should be declared external:

 - StandardToken.transferFrom(address,address,uint256) (B21.sol#115-125)

approve(address,uint256) should be declared external:

 - StandardToken.approve(address,uint256) (B21.sol#137-141)

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

COMMENTS

allowance(address,address) should be declared external:

 - StandardToken.allowance(address,address) (B21.sol#149-151)

increaseApproval(address,uint256) should be declared external:

 - StandardToken.increaseApproval(address,uint256) (B21.sol#159-163)

decreaseApproval(address,uint256) should be declared external:

 - StandardToken.decreaseApproval(address,uint256) (B21.sol#165-174)

The use case of the smart contract is very well designed and Implemented.

Overall, the code is well written and demonstrates effective use of abstraction,

separation of concerns, and modularity. B21 development team demonstrated

high technical capabilities, both in the design of the architecture and in the

implementation.

All the bugs, suggestions and recommends has been considered by the B21

team and some of the issues they will handle on their own as those issues or

calls have been handle by the only owner.

h t t p s : / / c r y p t i c o c e a n . c om h e l l o @ c r y p t i c o c e a n . c om

