SMART CONTRACT
AUDIT REPORT

JULY 12TH 2020

PREPARED BY
CRYPTIC OCEAN

Introduction

Auditing approach and
methodologies

Project details

Summary of moon contract
Audit goals

Severity level references
Issues explained

Unit testing

Contract description table
Coverage report
Implementation and

recommendations

Moon is an
experimental
deflationary token
with a staking
reward system along
with referrals.

This Audit Report highlights the overall security of Moon
Smart Contract. With this report, we have tried to ensure
the reliability of their smart contract by complete
assessment of their system’s architecture and the smart
contract codebase.

https://moon.dev/index.html
https://moon.dev/index.html

CrypticOcean team has performed
thorough testing of the project
starting with analysing the code
design patterns in which we
reviewed the smart contract
architecture to ensure it is
structured and safe use of third
party smart contracts and libraries.

Our team then performed a formal
line by line inspection of the Smart
Contract in order to find any
potential issue like race conditions,
transaction-ordering dependence,
timestamp dependence, and denial
of service attacks.

In the Unit testing Phase we
coded/conducted Custom unit tests
written for each function in the
contract to verify that each function
works as expected. In Automated
Testing, We tested the Smart
Contract with our in-house
developed tools to identify
vulnerabilities and security flaws.

The code was tested in collaboration
of our multiple team members and
this included -

e Testing the functionality of the
Smart Contract to determine
proper logic has been followed
throughout.

e Analyzing the complexity of the
code by thorough, manual review
of the code, line-by-line.

e Deploying the code on testnet
using multiple clients to run live
tests

e Analysing failure preparations to
check how the Smart Contract
performs in case of bugs and
vulnerabilities.

e Checking whether all the libraries
used in the code are on the latest
version.

e Analyzing the security of the on-
chain data.

Project f\l'ﬁ.rlfer .Mlclaon
W-éb-sife-/therscan Code :_https://moon.dev/

-‘::"L.cmguages: Solidity(Smart contract), Javascript(Unit Testing)
Commit hash : d6f5e2e4d28a75aaf4b341f3d91d3488c14c9b61

Cryptic Ocean conducted a security audit of a smart
contract of Moon. Moon contract is used to create the
ERC20 token which is a Moon TOKEN, Smart contract
contains basic functionalities of ERC20 along with
unique staking, referral and burning capability of Moon
token.

All holders who do not sell or move ANY Moon V1 from
that block until the snapshot before launch will get a
bonus swap ratio of 1:1.2! :rocket: ie a 20% bonus
reward.

https://moon.dev/index.html

The focus of the audit was to verify that the smart
contract system is secure, resilient and working
according to its specifications. The audit activities
can be grouped in the following three categories:

Security: Identifying security related issues
within each contract and within the system of
contracts.

Sound Architecture: Evaluation of the
architecture of this system through the lens of
established smart contract best practices and
general software best practices.

Code Correctness and Quality: A full review of
the contract source code.

The primary areas of focus include:

e Correctness

e Readability

e Sections of code with high complexity
e Quantity and quality of test coverage

Every issue in this report was assigned a severity level
from the following:

High severity
Will bring problems and should be
fixed.

Medium severity
Could potentially bring problems and
should eventually be fixed.

Are minor details and warnings that -
can remain unfixed but would be 1
better fixed at some point in the

future.

No high Severity issue Found

No Medium Severity Issue.

e« Ownable.initialize() and
detailedERC20.initialize() access modifier
can be changed to internal from public.

e Report of a shadow variable has been
found in initialize contract
Many variables have been shadowed in the
smart contract. Make sure, you have inherited
the contract in a standard way to minimize the
shadow of variables.

INFO:Detectors:

e Ignores return value by external calls

Your smart contract has ignored the return
values at many place. Make sure you return a
function if you have implemented it.

ging-the-state

“referralPool.add(amount)}” (MoonStakin

e Reentrancy issues has been found

Smart contract contains some functions that
arise the situation of reentrancy make sure you
have all the checks to minimize the reentrancy
issue in smart contract functions

-vulnerabilities-2

e These functions can be declared externally

Public functions that are never called by the
contract should be declared external to save
gas.

[T -T I TI-TR- TR

[TR-TI-

a

(o o o ol o o o e o o o
fal]

w

Should correctly initialize constructor values of Moon
Token Contract (174ms)

Should check the Total Supply of Moon TOKEN
(44ms)

Should check the Maximum Total Supply of Moon
TOKEN (56ms)

Should check the Name of a token of Moon TOKEN
(60ms)

Should check the symbol of a token of Moon TOKEN
(46ms)

Should check the decimal of a token of Moon TOKEN
(52ms)

Should check the Owner of a Moon TOKEN contract
(39ms)

Should check the balance of a Owner (57ms)
Should check transfered allowed or Not (46ms)

Should not be able to Mint token by Non Owner
account (169ms)

Should Mint token by Owner to Account [1] (302ms)

Should check the balance of a Account [1] after
minting

Should check the Total Supply of Moon TOKEN after
Minting Token (40ms)

Should not be able to burn tokens of Account [1] more
than account balance (91ms)

Should not be able to burn tokens of Account [1] by
Non owner Account (111ms)

Should be able to burn tokens of Account [1] by
owner only (136ms)

Should check the balance of a Account [1] after
tokens burned by Owner (92ms)

Should check the Total Supply of Moon TOKEN after
tokens are burned

Should be able to Mint tokens by Owner to Owner
(362ms)

Should check the balance of a Account [0] after
minting

Should check the Total Supply of Moon TOKEN after
Minting Token

Owner Should be able to burn tokens using function
Burn (225ms)

Should check the balance of Owner after burn

Should check the Total Supply of Moon TOKEN after
Burn

Should be able to transfer tokens to accounts[2] by
owner (195ms)

Should Not be able to transfer tokens to accounts[3]
by accounts[2] when transfer is Not allowed (188ms)

Should correctly initialize constructor of
MoonTokenV2 token Contract (187ms)

Should correctly initialize constructor of Moon
Staking Contract (209ms)

Should initialize moontokenv2 (135ms)
Should check a name of a token (41ms)
Should check a symbol of a token

Should check a decimal of a token
Should check a owner of a token (39ms)
Should check is owner of a token

Should check if Air drop complete (63ms)
Should check Tax basic points

Should check referral basic points

Should check burn basic points

Should check Tax basic points of stacking contracts
(39ms)

Should check referral basic points of stacking
contracts

Should check burn basic points of stacking contracts

Should check dividends of investor before staking
(143ms)

Should check a owner of a staking (42ms)
Should check is owner of a stacking (39ms)
Should check if a address is a pool manager (38ms)

Should check if a address is a pool manager when its
not

Should check if a address is a pool manager for true
Should be able to aproove tokens to spent (40ms)
Should be able to burn own tokens (43ms)

Should be able to burn approved token

Should be able to increase the allowance (40ms)
Should be able to decrease the allowance (43ms)

Should be able to grant address whitelist (49ms)

Should
Should
Should

Should
(39ms)

Should
Should
Should
Should
Should
Should
Should
Should
Should
Should
Should
Should

Should

be

be

be

be

be

be

be

be

be

be

be

be

be

be

be

be

be

able

able

able

able

able

able

able

able

able

able

able

able

able

able

able

able

able

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

airdrop
set airdrop complete (42ms)
transfer ownership (38ms)

check new owner of a contract

check is owner of a contract
transfer tokens (38ms)
transfer approved tokens
set bonus whitelist
reannounce ownership
set tax excempt status
check tax exempt (39ms)
add pool manager

check pool manage

stake

check stake value (39ms)
unstake

invest again

Should
Should
Should
Should

Should
(41ms)

Should
Should
Should

Should
(9s)

NOTE

be

be

be

be

be

be

be

be

be

check balance

able to stake with refferal (38ms)

able

able

able

able

able

able

able

to

to

to

to

to

to

to

check stake value (39ms)
unstake (39ms)

transfer ownership of contract

check owner of a contract
renounce ownership (41ms)
check referral payout (39ms)

check stake referral 85 passing

0 Failed

Unit testing is the most important part of smart contract
audit that allows auditors to create scenarios to exploit
vulnerabilities of smart contracts, by preparing the
environment for known attacks and also to validate
business logic of a smart contract. Efficiency of unit
testing can be checked by coverage reports of smart
contracts.

Files Description Table

File Name SHA-1 Hash
MoonTokenV2 sal a70043f4cd 7 3e5e0906e054995fbdc 1 Oee 74 3aff

Contracts Description Table

Contract Type Bases
B Function Name Visibility Mutability Modifiers

MoonTokenV2 Implementation Initalizable, Ownable, ERC20Burnable, ERC20Detaliled
L initialize Public |
L sel TaxExempiStatus Public |
B taxAmount Public |
L transfer Public |
L |
i |

initializer

onlyOwner
NO |
NO |
NO |

onlyOwner

transferFrom Public
se1BonusWhitelist Public
grantBonusWhitelistMulti Public
airdrop Public
setAirdropComplete Public |

onlyOwner
onlyOwner
onlyOwner

_airdrop Internal
_transferwithTax Internal

Legend

Symbol Meaning
@ Function can modify state
pE Function is payvable

Files Description Table
Flle M ame SHA-1 Hash

Contracts Description Table
el Type

Funciian Namas Mutatilin Mpditiers

™ pan S aking

Legend
Symibal Meaning
L]

(1]

% Stmts | % Branch Uncovered Lines |

________________ |
contracts/

BasicToken.sol

DigipharmToken.sol

ERC20.s01l

ERC20Basic.sol

Ownable.sol

StandardToken.sol

|
|
|
|
|
|
|
MintableToken.sol |
|
|
|
|
|
|

Coverage report will let you know the efficiency of smart
contract unit testing

Implementation and Recommendations :

o All the possible information based or low severity issues
have been explained above. We recommend you to go
through it.

e As contract deals in stacking and payout of tokens we
suggest you to assure thereentrancy part again and if
possible you can check for address while stacking if it's
not a contract address and a wallet address.

Comments:

Use case of smart contract is very well designed and
Implemented.Overall, the code is clearly written, and
demonstrates effective use of abstraction, separation of
concerns, and modularity. Moon development team
demonstrated high technical capabilities, both in the
design of the architecture and in the implementation.

We found some critical issue and several additional
issues that require the attention of the Moon team.
Given the subjective nature of some assessments, it will
be up to the Moon team to decide whether any

changes should be made.

PREPARED BY
CRYPTIC OCEAN

